User Tools

Site Tools


nnp:optics:absorption_spectrum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:optics:absorption_spectrum [2017/01/11 11:26]
zoltan.jehn [Eigenvalues]
nnp:optics:absorption_spectrum [2017/02/20 21:25] (current)
stefan.birner [Eigenvalues]
Line 1: Line 1:
-====== ​Results ​======+===== Absorption Spectrum ​===== 
 + 
 +With the optics features of **nextnano++**,​ the optical absorption spectrum can be calculated for various polarization directions. 
 + 
 +==== Physics Model ==== 
 + 
 +The absorption rate in a semiconductor can be written as 
 + 
 +\[ 
 + ​R_{ba} = \frac{2}{V} \sum_{k_a} \sum_{k_b} \frac{2 \pi}{ \hbar} |H_{ba}| ^2 \delta(E_b - E_a -\hbar \omega)(1-f_a) \cdot f_b, 
 +\] 
 + 
 +where the matrix element $|H_{ba}|$ depends on the polarization of light and the $\bf k$ vector.  
 + 
 +==== Input File ==== 
 + 
 + 
 +===== Results ​=====
 ==== Transition Matrix Element ==== ==== Transition Matrix Element ====
-The transition matrix element $H_{ab}(k)$ is plotted ​in the function of $\vec{k}$ for a 1D structure in figure {{ref>​absk}}+The transition matrix element $H_{ab}({\bf k})$ is plotted ​as a function of ${\bf k}=(k_x,k_y)$ for a quantum well structure ​(1D simulation) ​in figure {{ref>​absk}} 
  
 <figure absk> <figure absk>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
  
 -3.68039679527 -3.68039679527 20.0033226842 -3.68039679527 -3.68039679527 20.0033226842
Line 370: Line 388:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Transition matrix element in the $\vec{k}$ space</​caption>​+<​caption>​Transition matrix element in ${\bf k}$ space</​caption>​
 </​figure>​ </​figure>​
  
 ==== Eigenvalues ==== ==== Eigenvalues ====
  
-The first eigenfunction'​s energy in the kp-space ​is plotted in figure {{ref>​edisp}} for electrons, and in figure {{ref>​hdisp}} for holes.+The dispersion of the ground state energy ​is plotted ​with respect to $\bf k$ space in figure {{ref>​edisp}} for electrons, and in figure {{ref>​hdisp}} for holes, respectively.
  
  
 <figure edisp> <figure edisp>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
 -3.68039679527 -3.68039679527 -1.17995996739 -3.68039679527 -3.68039679527 -1.17995996739
 -3.27146363258 -3.68039679527 -1.13216656366 -3.27146363258 -3.68039679527 -1.13216656366
Line 744: Line 762:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Energy dispersion relation ​in the $\vec{k}space for electrons</​caption>​+<​caption>​Energy dispersion relation $E(k_x,k_y)$ for the lowest electron eigenvalue</​caption>​
 </​figure>​ </​figure>​
  
Line 750: Line 768:
 <figure hdisp> <figure hdisp>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
 -3.68039679527 -3.68039679527 5.32195115805 -3.68039679527 -3.68039679527 5.32195115805
 -3.27146363258 -3.68039679527 5.14027884292 -3.27146363258 -3.68039679527 5.14027884292
Line 1114: Line 1132:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Energy dispersion relation ​in the $\vec{k}space for holes</​caption>​+<​caption>​Energy dispersion relation $E(k_x,k_y)$ for the highest hole eigenvalue</​caption>​
 </​figure>​ </​figure>​
  
nnp/optics/absorption_spectrum.1484133998.txt.gz · Last modified: 2017/01/11 11:26 by zoltan.jehn