User Tools

Site Tools


nnp:optics:absorption_spectrum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:optics:absorption_spectrum [2017/02/01 15:43]
zoltan.jehn [Physics Model]
nnp:optics:absorption_spectrum [2017/02/20 21:25] (current)
stefan.birner [Eigenvalues]
Line 8: Line 8:
  
 \[ \[
- ​R_{ba} = \frac{2}{V} \sum_{k_a} \sum_{k_b} \frac{2 \pi}{ \hbar} |H_{ba}| ^2 \delta(E_b - E_a -\hbar \omega)(1-f_a) \cdot f_b+ ​R_{ba} = \frac{2}{V} \sum_{k_a} \sum_{k_b} \frac{2 \pi}{ \hbar} |H_{ba}| ^2 \delta(E_b - E_a -\hbar \omega)(1-f_a) \cdot f_b,
 \] \]
  
-Where the $|H_{ba}|$ depends on the polarization and the $k$ vector. ​+where the matrix element ​$|H_{ba}|$ depends on the polarization ​of light and the $\bf k$ vector. ​
  
 ==== Input File ==== ==== Input File ====
Line 18: Line 18:
 ===== Results ===== ===== Results =====
 ==== Transition Matrix Element ==== ==== Transition Matrix Element ====
-The transition matrix element $H_{ab}(k)$ is plotted ​in the function of $\vec{k}$ for a 1D structure in figure {{ref>​absk}}+The transition matrix element $H_{ab}({\bf k})$ is plotted ​as a function of ${\bf k}=(k_x,k_y)$ for a quantum well structure ​(1D simulation) ​in figure {{ref>​absk}}
  
  
 <figure absk> <figure absk>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
  
 -3.68039679527 -3.68039679527 20.0033226842 -3.68039679527 -3.68039679527 20.0033226842
Line 388: Line 388:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Transition matrix element in the $\vec{k}$ space</​caption>​+<​caption>​Transition matrix element in ${\bf k}$ space</​caption>​
 </​figure>​ </​figure>​
  
 ==== Eigenvalues ==== ==== Eigenvalues ====
  
-The first eigenfunction'​s energy in the kp-space ​is plotted in figure {{ref>​edisp}} for electrons, and in figure {{ref>​hdisp}} for holes.+The dispersion of the ground state energy ​is plotted ​with respect to $\bf k$ space in figure {{ref>​edisp}} for electrons, and in figure {{ref>​hdisp}} for holes, respectively.
  
  
 <figure edisp> <figure edisp>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
 -3.68039679527 -3.68039679527 -1.17995996739 -3.68039679527 -3.68039679527 -1.17995996739
 -3.27146363258 -3.68039679527 -1.13216656366 -3.27146363258 -3.68039679527 -1.13216656366
Line 762: Line 762:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Energy dispersion relation ​in the $\vec{k}space for electrons</​caption>​+<​caption>​Energy dispersion relation $E(k_x,k_y)$ for the lowest electron eigenvalue</​caption>​
 </​figure>​ </​figure>​
  
Line 768: Line 768:
 <figure hdisp> <figure hdisp>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
 -3.68039679527 -3.68039679527 5.32195115805 -3.68039679527 -3.68039679527 5.32195115805
 -3.27146363258 -3.68039679527 5.14027884292 -3.27146363258 -3.68039679527 5.14027884292
Line 1132: Line 1132:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Energy dispersion relation ​in the $\vec{k}space for holes</​caption>​+<​caption>​Energy dispersion relation $E(k_x,k_y)$ for the highest hole eigenvalue</​caption>​
 </​figure>​ </​figure>​
  
nnp/optics/absorption_spectrum.1485963792.txt.gz · Last modified: 2017/02/01 15:43 by zoltan.jehn