User Tools

Site Tools


nnp:optics:absorption_spectrum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:optics:absorption_spectrum [2017/02/03 12:03]
stefan.birner [Eigenvalues]
nnp:optics:absorption_spectrum [2017/02/20 21:25] (current)
stefan.birner [Eigenvalues]
Line 11: Line 11:
 \] \]
  
-where the matrix element $|H_{ba}|$ depends on the polarization of light and the $k$ vector. ​+where the matrix element $|H_{ba}|$ depends on the polarization of light and the $\bf k$ vector. ​
  
 ==== Input File ==== ==== Input File ====
Line 18: Line 18:
 ===== Results ===== ===== Results =====
 ==== Transition Matrix Element ==== ==== Transition Matrix Element ====
-The transition matrix element $H_{ab}({\bf k})$ is plotted as a function of ${\bf k}=(k_x,​k_y)$ for a 1D structure in figure {{ref>​absk}}+The transition matrix element $H_{ab}({\bf k})$ is plotted as a function of ${\bf k}=(k_x,​k_y)$ for a quantum well structure ​(1D simulation) ​in figure {{ref>​absk}}
  
  
 <figure absk> <figure absk>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
  
 -3.68039679527 -3.68039679527 20.0033226842 -3.68039679527 -3.68039679527 20.0033226842
Line 393: Line 393:
 ==== Eigenvalues ==== ==== Eigenvalues ====
  
-The first eigenfunction'​s energy in the kp-space ​is plotted in figure {{ref>​edisp}} for electrons, and in figure {{ref>​hdisp}} for holes.+The dispersion of the ground state energy ​is plotted ​with respect to $\bf k$ space in figure {{ref>​edisp}} for electrons, and in figure {{ref>​hdisp}} for holes, respectively.
  
  
 <figure edisp> <figure edisp>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
 -3.68039679527 -3.68039679527 -1.17995996739 -3.68039679527 -3.68039679527 -1.17995996739
 -3.27146363258 -3.68039679527 -1.13216656366 -3.27146363258 -3.68039679527 -1.13216656366
Line 762: Line 762:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Energy dispersion relation $E(k_x,​k_y)$ for electron ​eigenvalues</​caption>​+<​caption>​Energy dispersion relation $E(k_x,​k_y)$ for the lowest ​electron ​eigenvalue</​caption>​
 </​figure>​ </​figure>​
  
Line 768: Line 768:
 <figure hdisp> <figure hdisp>
 ;#; ;#;
-<​dataplot dimension=2 xlabel="​k_x"​ ylabel="​k_y"​ ylegends=""​ 600x400>+<​dataplot dimension=2 xlabel="​k_x ​(nm^{-1})" ylabel="​k_y ​(nm^{-1})" ylegends=""​ 600x400>
 -3.68039679527 -3.68039679527 5.32195115805 -3.68039679527 -3.68039679527 5.32195115805
 -3.27146363258 -3.68039679527 5.14027884292 -3.27146363258 -3.68039679527 5.14027884292
Line 1132: Line 1132:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Energy dispersion relation $E(k_x,​k_y)$ for hole eigenvalues</​caption>​+<​caption>​Energy dispersion relation $E(k_x,​k_y)$ for the highest ​hole eigenvalue</​caption>​
 </​figure>​ </​figure>​
  
nnp/optics/absorption_spectrum.1486123387.txt.gz · Last modified: 2017/02/03 12:03 by stefan.birner