User Tools

Site Tools


nnp:optics:led_simulation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:optics:led_simulation [2017/02/02 14:45]
stefan.birner [Input file structure]
nnp:optics:led_simulation [2019/06/28 12:56] (current)
stefan.birner [Input file structure]
Line 2: Line 2:
  
 In the following example we are going to show how the spectra of a Light Emitting Diode (LED) can be calculated with the **nextnano++** software. In the following example we are going to show how the spectra of a Light Emitting Diode (LED) can be calculated with the **nextnano++** software.
 +This example does not include the Schrödinger equation.
  
 ==== Physics model ==== ==== Physics model ====
Line 7: Line 8:
 In an LED the photons are emitted in the radiative recombination process, In an LED the photons are emitted in the radiative recombination process,
 ;#; ;#;
-$$R_{\rm sp} = c_{\rm rad} (n  p - n_i^2),$$+$$R_{\rm sp} = c_{\rm rad} (n  p - n_{\rm i}^2),$$
 ;#; ;#;
 where $R_{\rm sp}$ is the local spontaneous emission rate, where $R_{\rm sp}$ is the local spontaneous emission rate,
-$n$ and $p$ correspond to the density of the electrons and the holes in the volume element, and $n_i$ is the intrinsic density of the charge carriers. ​+$n$ and $p$ correspond to the density of the electrons and the holes in the volume element, and $n_{\rm i}$ is the intrinsic density of the charge carriers. ​
 $R_{\rm sp}(x)$ depends on position $x$ because the densities depend on position. $R_{\rm sp}(x)$ depends on position $x$ because the densities depend on position.
 The bimolecular recombination coefficient $c_{\rm rad}$ is a material dependent constant and has units ${\rm cm}^3/{\rm s}$. The bimolecular recombination coefficient $c_{\rm rad}$ is a material dependent constant and has units ${\rm cm}^3/{\rm s}$.
 +The order of magnitude is around $10^{-10}{\rm cm}^3/{\rm s}$.
  
 This recombination rate is coupled into the drift-diffusion equation and the stationary solution of the problem, This recombination rate is coupled into the drift-diffusion equation and the stationary solution of the problem,
Line 68: Line 70:
    ​output_intrinsic_density{}    ​output_intrinsic_density{}
    ​energy_distribution{ ​             # Calculation of carrier densities as a function of energy    ​energy_distribution{ ​             # Calculation of carrier densities as a function of energy
- min = -5                     ​# Integrate from + min = -5.0                   # Integrate from 
- max =  5                     ​# Integrate to+ max =  5.0                   # Integrate to
  energy_resolution = 0.05     # Integration resolution  energy_resolution = 0.05     # Integration resolution
 +        emission_spectrum = yes      # Output classical emission spectrum (both, photon count and intensity)
    }    }
 } }
Line 78: Line 81:
 <​Code>​ <​Code>​
    ​energy_distribution{ ​             # Calculation of carrier densities as a function of energy    ​energy_distribution{ ​             # Calculation of carrier densities as a function of energy
- min = -5                     ​# Integrate from + min = -5.0                   # Integrate from 
- max = 5                      # Integrate to+ max =  5.0                   # Integrate to
  energy_resolution = 0.05     # Integration resolution  energy_resolution = 0.05     # Integration resolution
 +        emission_spectrum = yes      # 
    }    }
 </​Code>​ </​Code>​
Line 91: Line 95:
 The simulated structure is a **p-i-n** diode. The simulated structure is a **p-i-n** diode.
 The layers of the heterostructure are //p//-GaAs - //​p//​-AlGaAs - InGaAs - //​n//​-AlGaAs - //n//-GaAs. The layers of the heterostructure are //p//-GaAs - //​p//​-AlGaAs - InGaAs - //​n//​-AlGaAs - //n//-GaAs.
-In the intrinsic InGaAs region in the center, the Fermi levels reach the band edges of the quantum well, which leads to a population in the well for both electrons, and holes. ​The applied bias in the drift-diffusion equation results in a splitting of the hole and electron quasi-Fermi levels. This can be seen in the plot of the band edge profile of figure {{ref>​bandstructure}} +The applied bias in the drift-diffusion equation results in a splitting of the hole and electron quasi-Fermi levels. 
 +This can be seen in the plot of the band edge profile of figure {{ref>​bandstructure}}. 
 +In the intrinsic InGaAs region in the center, the Fermi levels reach the band edges of the quantum well, which leads to a significant density of electrons and holes in the quantum well (//not shown//).
  
    
Line 98: Line 103:
 ;#; ;#;
  
-<​dataplot center linepoints xrange=-50.0:​50.0 yrange=-2.5:​2.5 xlabel="​(nm)" ylabel="​Energy (eV)" ylegends="​Gamma LH HH SO Fermi_{electron} Fermi_{hole}"​ 600x400>+<​dataplot center linepoints xrange=-50.0:​50.0 yrange=-2.5:​2.5 xlabel="​Position ​(nm)" ylabel="​Energy (eV)" ylegends="​Gamma LH HH SO Fermi_{electron} Fermi_{hole}" title="​Band edge profile of a pin diode" 600x400>
 -85 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -85 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8
 -84.801 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -84.801 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8
Line 1810: Line 1815:
  
  
-The carrier distribution with respect to energy can be seen in figure {{ref>​carrierenergy}}. The density is summed up for the full device.+The carrier distribution with respect to energy ​($n(E)$, $p(E)$) ​can be seen in figure {{ref>​carrierenergy}}. The density is summed up (integrated) ​for the full device.
 (This means that the position information of the carrier densities is "​lost"​ in this view). (This means that the position information of the carrier densities is "​lost"​ in this view).
 <figure carrierenergy>​ <figure carrierenergy>​
Line 2019: Line 2024:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Energy distribution of carriers ​for the full device ​volume</​caption>​+<​caption>​Energy distribution ​$n(E)$ and $p(E)$ ​of the electrons and holes for the full device</​caption>​
 </​figure>​ </​figure>​
  
Line 2232: Line 2237:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Emission spectrum (Intensity) of the **p-i-n** diode structure in units of 1/​eV.</​caption>​+<​caption>​Emission spectrum (intensity) of the **p-i-n** diode structure in units of 1/​eV.</​caption>​
 </​figure>​ </​figure>​
  
Line 2602: Line 2607:
  
 */ */
 +The input file can be downloaded from {{nnp:​optics:​ledsim_zb_-_p-i-n_device.zip?​linkonly | here }}
 +
nnp/optics/led_simulation.1486046712.txt.gz · Last modified: 2017/02/02 14:45 by stefan.birner