User Tools

Site Tools


nnp:optics:led_simulation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:optics:led_simulation [2017/02/02 16:39]
stefan.birner [Carrier distribution]
nnp:optics:led_simulation [2019/06/28 12:56] (current)
stefan.birner [Input file structure]
Line 2: Line 2:
  
 In the following example we are going to show how the spectra of a Light Emitting Diode (LED) can be calculated with the **nextnano++** software. In the following example we are going to show how the spectra of a Light Emitting Diode (LED) can be calculated with the **nextnano++** software.
 +This example does not include the Schrödinger equation.
  
 ==== Physics model ==== ==== Physics model ====
Line 7: Line 8:
 In an LED the photons are emitted in the radiative recombination process, In an LED the photons are emitted in the radiative recombination process,
 ;#; ;#;
-$$R_{\rm sp} = c_{\rm rad} (n  p - n_i^2),$$+$$R_{\rm sp} = c_{\rm rad} (n  p - n_{\rm i}^2),$$
 ;#; ;#;
 where $R_{\rm sp}$ is the local spontaneous emission rate, where $R_{\rm sp}$ is the local spontaneous emission rate,
-$n$ and $p$ correspond to the density of the electrons and the holes in the volume element, and $n_i$ is the intrinsic density of the charge carriers. ​+$n$ and $p$ correspond to the density of the electrons and the holes in the volume element, and $n_{\rm i}$ is the intrinsic density of the charge carriers. ​
 $R_{\rm sp}(x)$ depends on position $x$ because the densities depend on position. $R_{\rm sp}(x)$ depends on position $x$ because the densities depend on position.
 The bimolecular recombination coefficient $c_{\rm rad}$ is a material dependent constant and has units ${\rm cm}^3/{\rm s}$. The bimolecular recombination coefficient $c_{\rm rad}$ is a material dependent constant and has units ${\rm cm}^3/{\rm s}$.
 +The order of magnitude is around $10^{-10}{\rm cm}^3/{\rm s}$.
  
 This recombination rate is coupled into the drift-diffusion equation and the stationary solution of the problem, This recombination rate is coupled into the drift-diffusion equation and the stationary solution of the problem,
Line 68: Line 70:
    ​output_intrinsic_density{}    ​output_intrinsic_density{}
    ​energy_distribution{ ​             # Calculation of carrier densities as a function of energy    ​energy_distribution{ ​             # Calculation of carrier densities as a function of energy
- min = -5                     ​# Integrate from + min = -5.0                   # Integrate from 
- max =  5                     ​# Integrate to+ max =  5.0                   # Integrate to
  energy_resolution = 0.05     # Integration resolution  energy_resolution = 0.05     # Integration resolution
 +        emission_spectrum = yes      # Output classical emission spectrum (both, photon count and intensity)
    }    }
 } }
Line 78: Line 81:
 <​Code>​ <​Code>​
    ​energy_distribution{ ​             # Calculation of carrier densities as a function of energy    ​energy_distribution{ ​             # Calculation of carrier densities as a function of energy
- min = -5                     ​# Integrate from + min = -5.0                   # Integrate from 
- max =  5                     ​# Integrate to+ max =  5.0                   # Integrate to
  energy_resolution = 0.05     # Integration resolution  energy_resolution = 0.05     # Integration resolution
 +        emission_spectrum = yes      # 
    }    }
 </​Code>​ </​Code>​
Line 99: Line 103:
 ;#; ;#;
  
-<​dataplot center linepoints xrange=-50.0:​50.0 yrange=-2.5:​2.5 xlabel="​(nm)" ylabel="​Energy (eV)" ylegends="​Gamma LH HH SO Fermi_{electron} Fermi_{hole}"​ 600x400>+<​dataplot center linepoints xrange=-50.0:​50.0 yrange=-2.5:​2.5 xlabel="​Position ​(nm)" ylabel="​Energy (eV)" ylegends="​Gamma LH HH SO Fermi_{electron} Fermi_{hole}" title="​Band edge profile of a pin diode" 600x400>
 -85 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -85 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8
 -84.801 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -84.801 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8
Line 2020: Line 2024:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Energy distribution of carriers ​for the full device ​volume</​caption>​+<​caption>​Energy distribution ​$n(E)$ and $p(E)$ ​of the electrons and holes for the full device</​caption>​
 </​figure>​ </​figure>​
  
Line 2233: Line 2237:
 </​dataplot>​ </​dataplot>​
 ;#; ;#;
-<​caption>​Emission spectrum (Intensity) of the **p-i-n** diode structure in units of 1/​eV.</​caption>​+<​caption>​Emission spectrum (intensity) of the **p-i-n** diode structure in units of 1/​eV.</​caption>​
 </​figure>​ </​figure>​
  
Line 2603: Line 2607:
  
 */ */
 +The input file can be downloaded from {{nnp:​optics:​ledsim_zb_-_p-i-n_device.zip?​linkonly | here }}
 +
nnp/optics/led_simulation.1486053571.txt.gz · Last modified: 2017/02/02 16:39 by stefan.birner