User Tools

Site Tools


nnp:optics:optical_gain

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:optics:optical_gain [2017/02/03 10:46]
stefan.birner [Optical Gain]
nnp:optics:optical_gain [2017/02/20 21:21] (current)
stefan.birner
Line 3: Line 3:
 In this tutorial we calculate the optical gain upon optical irradiation. In this tutorial we calculate the optical gain upon optical irradiation.
 The irradiation parameters are the The irradiation parameters are the
-  * Photon ​energy of the irradiation +  * photon ​energy of the irradiation ​and the 
-  * Line width.+  * line width.
  
 ==== Physics model ==== ==== Physics model ====
-The transition rate per volume element can be expressed with the following sum:+The transition rate per volume element can be expressed with the following sum,
 \[ \[
-R = R_{ab} - R_{ba} = \frac{2}{V} \sum_{k_a} \sum_{k_b} \frac{2 \pi}{ \hbar} |H_{ba}| ^2 \delta(E_b - E_a -\hbar \omega)(f_a-f_b)+R = R_{ab} - R_{ba} = \frac{2}{V} \sum_{k_a} \sum_{k_b} \frac{2 \pi}{ \hbar} |H_{ba}| ^2 \delta(E_b - E_a -\hbar \omega)(f_a-f_b).
 \] \]
  
-In order to make evaluate the sum much faster we calculate the $H_{ba}$ matrix element at $k_a = 0; k_b = 0$ (Remark: $k_a = k_b$), and we neglect the k dependence of it.  +In order to evaluate the sum much faster we calculate the $H_{ba}$ matrix element at $k_a = 0; k_b = 0$ (Remark: $k_a = k_b$), and we neglect the $kdependence of it.  
-Then we can simplify the sum in the following formif the irradiation has the $\gamma(E, w)$ broadening function, where $E$ is the irradiation energy, and $w$ is the line width.  +Then we can simplify the sum as follows
 \[ \[
-R(E, w) = C_0(E) ​  ​\int ​dE_a dE_b \gamma(E_a-E,​ w) \cdot  H(E_a-E) \cdot  [n(E_a) - p(E_b)]+R(E, w) = C_0(E) ​  \int \gamma(E_a-E,​ w) \cdot  H(E_a-E) \cdot  [n(E_a) - p(E_b)] ​ {\rm d}E_a {\rm d}E_b,
 \] \]
 +where $E$ is the irradiation energy, $w$ is the line width and we assume that the irradiation has the $\gamma(E, w)$ broadening function.
  
-Here $C_0(E)$ is an energy dependent constant:+Here $C_0(E)$ is an energy dependent constant,
 \[ \[
-C_0 = \frac{\pi e^2 \hbar}{n_r c \epsilon_0 m_0^2 E}+C_0 = \frac{\pi e^2 \hbar}{n_{\rm r} c \epsilon_0 m_0^2 E}.
 \]  \] 
  
 ====Input file structure==== ====Input file structure====
  
-A new keyword has been introduced to handle an optical device, ​//opticaldevice{}//+A new keyword has been introduced to handle an optical device, ​''​opticaldevice{}''​.
  
 <​code>​ <​code>​
 opticaldevice{ opticaldevice{
  name = "​quantum_region_name"​  name = "​quantum_region_name"​
- line_broadening = 1            #Line broadening model (1: Lorentzian) + line_broadening = 1            # Line broadening model (1: Lorentzian) 
- photon_energy = 1              #Photon energy in (eV) + photon_energy ​  ​= 1.0          ​# Photon energy in (eV) 
- line_width = 1                 ​#Line width in (eV)+ line_width ​     = 1.0          ​# Line width in (eV)
 } }
 </​code>​ </​code>​
  
-An in the run paragraph you have to also add //solve_optical_device{}// in order to include it the simulation flow+The ''​run''​ keyword requires ''​solve_optical_device{}'' ​to be included.
  
 ==== Results ==== ==== Results ====
 <​figure>​ <​figure>​
 ;#; ;#;
-<​dataplot xlabel="​x(nm)" ylabel="​1/​s/​m^3"​ ylegends="​Gain">​+<​dataplot xlabel="​Position ​(nm)" ylabel="​Gain (1/s/m^3)" ylegends="​Gain" title="​Optical gain">
 -90 0 -90 0
 -85 0 -85 0
nnp/optics/optical_gain.1486118781.txt.gz · Last modified: 2017/02/03 10:46 by stefan.birner