User Tools

Site Tools


qcl:simulation_output

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
qcl:simulation_output [2021/08/18 13:53]
takuma.sato [2D plots]
qcl:simulation_output [2022/09/20 17:10] (current)
thomas.grange
Line 70: Line 70:
  
 The folder ''​Init_Electr_Modes\ReducedRealSpace\''​ contains:\\ The folder ''​Init_Electr_Modes\ReducedRealSpace\''​ contains:\\
-  * ''​ReducedRealSpaceModes.dat''​\\ Conduction band edge and square of the wave functions (shifted in energy) vs. the heterostructure coordinate position.\\ 3 periods are displayed. ​(p0) means period ​(left period), (p1) means period 1 (central period), and p2 period 2 (right period). The numbers of states displayed is equal to 3 times the number of states per period, that is the number of selected minibands.+  * ''​ReducedRealSpaceModes.dat''​\\ Conduction band edge and square of the wave functions (shifted in energy) vs. the heterostructure coordinate position.\\ 3 periods are displayed. ​'per.0' '​per.1'​ '​per.2'​ in the wavefunction names refer to the left, middle ​and right period ​shown. The numbers of states displayed is equal to 3 times the number of states per period, that is the number of selected minibands.
 {{ :​qcl:​ReducedRealSpace.png?​direct&​500 |}} {{ :​qcl:​ReducedRealSpace.png?​direct&​500 |}}
   * ''​ReducedRealSpaceModesOn.dat''​ \\ Same as in ''​ReducedRealSpaceModes.dat''​ but the vanishing parts of the wavefunctions are not shown (plot not supported by nextnanomat).   * ''​ReducedRealSpaceModesOn.dat''​ \\ Same as in ''​ReducedRealSpaceModes.dat''​ but the vanishing parts of the wavefunctions are not shown (plot not supported by nextnanomat).
Line 90: Line 90:
 The Wannier-Stark states correspond to the eigenstates of the Schrödinger equation without accounting for Poisson equation (i.e. electrostatic mean-field).\\ The Wannier-Stark states correspond to the eigenstates of the Schrödinger equation without accounting for Poisson equation (i.e. electrostatic mean-field).\\
 It contains: It contains:
-  * ''​Wannier-Stark_States.dat''​ shows the conduction band edge and the probability densities of the eigenstates of the Wannier-Stark states. Schrödinger equation+  * ''​Wannier-Stark_States.dat''​ shows the conduction band edge and the probability densities of the eigenstates of the Schrödinger equation (the Wannier-Stark states)
 {{ :​qcl:​wannier-stark.png?​direct&​500 |}} {{ :​qcl:​wannier-stark.png?​direct&​500 |}}
   * ''​Wannier-Stark_levelsOn.dat''​. Same as ''​Wannier-Stark_States.dat''​ except that the points with almost zero probability density are omitted.   * ''​Wannier-Stark_levelsOn.dat''​. Same as ''​Wannier-Stark_States.dat''​ except that the points with almost zero probability density are omitted.
Line 101: Line 101:
   * ''​Oscillator_Strength.mat''​ gives the oscillator strengths.   * ''​Oscillator_Strength.mat''​ gives the oscillator strengths.
  
 +=== Oscillator strength ===
 +The oscillator strength is calculated from the formula
 +$$ 
 +f_{\alpha \beta} = \frac{2 \vert p_{\alpha \beta}\vert^2}{m_0 (E_{\beta} - E_{\alpha})}
 +$$
 +Note that the electron mass $m_0$ entering the above formula is the bare electron mass.
 +
 +This oscillator strength (which is sometimes referred as the unnormalized one), differs from the usual definition in the single band case by the ratio $m^*/m_0$, i.e. $\frac{m^*}{m_0} f_{\alpha \beta}$ is called the normalized oscillator strength.
 +
 +The advantage of this unnormalized definition is that it is general enough to be applied to the multiband case.
 +
 +Note that in the parabolic single-band case, the usual sum-rule is retrieved by using the normalized definition ​
 +$$ 
 +\sum_{\beta \neq \alpha} \frac{m^*}{m_0} f_{\alpha \beta} = 1
 +$$
  
 === In-plane discretization === === In-plane discretization ===
Line 148: Line 163:
   * ''​EffectiveMasses.dat''​ gives the position and energy-dependent effective mass   * ''​EffectiveMasses.dat''​ gives the position and energy-dependent effective mass
   * ''​Populations.text''​ indicates the population (i.e. the probability of occupation) in each level $\Psi_i$ (normalized to 1 for one period of the structure).   * ''​Populations.text''​ indicates the population (i.e. the probability of occupation) in each level $\Psi_i$ (normalized to 1 for one period of the structure).
-  * ''​SpectralFunctions.dat''​ shows the diagonal part of the spectral function, i.e. the energy-resolved density of states (DOS).+  * ''​SpectralFunctions.dat''​ shows the diagonal part of the spectral function, i.e. the energy-resolved density of states (DOS) 
 +  * ''​SpontaneousemissionRate.txt''​ gives for each pair of initial and final state the scattering rate (s^-1) of spontaneous photon emission. 
 +  * ''​SpontaneousemissionRate.mat''​ gives the same information but in matrix form: the element ($i$,$j$) gives the scattering rate (s^-1) of spontaneous photon emission between the initial state $i$ and final state $j$
   * ''​Subband_KineticEnergy.txt''​ contains the averaged kinetic energy for each level/​subband $i$. Its calculation is given by:   * ''​Subband_KineticEnergy.txt''​ contains the averaged kinetic energy for each level/​subband $i$. Its calculation is given by:
 $$ \langle E_i \rangle = \frac{ \sum_{k} ~ p_{i,k} ~ E_{\parallel}(k)}{\sum_{k} ~ p_{i,k}}, $$ where $E_{\parallel}(k)$ is the in-plane kinetic energy. $$ \langle E_i \rangle = \frac{ \sum_{k} ~ p_{i,k} ~ E_{\parallel}(k)}{\sum_{k} ~ p_{i,k}}, $$ where $E_{\parallel}(k)$ is the in-plane kinetic energy.
Line 157: Line 174:
 ==== 2D plots ==== ==== 2D plots ====
 The folder ''​2D_plots\''​ contains 2D color maps as a function of **position [nm]** (horizontal axis) and **energy [eV]** (vertical axis). Note that these 2D plots show 2 QCL periods although only 1 period is simulated. The folder ''​2D_plots\''​ contains 2D color maps as a function of **position [nm]** (horizontal axis) and **energy [eV]** (vertical axis). Note that these 2D plots show 2 QCL periods although only 1 period is simulated.
-  * ''​DOS_energy_resolved.vtr''​ / ''​*.gnu''​ / ''​*.fld''​\\ Energy-resolved local density of states (LDOS) in units of [eV<​sup>​-1</​sup>​ nm<​sup>​-1</​sup>​]. The LDOS is related to the spectral function. It shows the available states for the electrons at $k_\parallel = 0$. +  * ''​DOS_energy_resolved.vtr''​ / ''​*.plt''​ / ''​*.fld''​\\ Energy-resolved local density of states (LDOS) in units of [eV<​sup>​-1</​sup>​ nm<​sup>​-1</​sup>​]. The LDOS is related to the spectral function. It shows the available states for the electrons at $k_\parallel = 0$. 
-  * ''​CarrierDensity_energy_resolved.vtr''​ / ''​*.gnu''​ / ''​*.fld''​\\ Energy-resolved electron density $n(z,E)$ [cm<​sup>​-3</​sup>​ eV<​sup>​-1</​sup>​]. It is related to the lesser Green'​s function $\mathbf{G}^<​$. +  * ''​CarrierDensity_energy_resolved.vtr''​ / ''​*.plt''​ / ''​*.fld''​\\ Energy-resolved electron density $n(z,E)$ [cm<​sup>​-3</​sup>​ eV<​sup>​-1</​sup>​]. It is related to the lesser Green'​s function $\mathbf{G}^<​$. 
-  * ''​CurrentDensity_energy_resolved.vtr''​ / ''​*.gnu''​ / ''​*.fld''​\\ Energy-resolved current density $j(z,E)$ [A cm<​sup>​-2</​sup>​ eV<​sup>​-1</​sup>​].+  * ''​CurrentDensity_energy_resolved.vtr''​ / ''​*.plt''​ / ''​*.fld''​\\ Energy-resolved current density $j(z,E)$ [A cm<​sup>​-2</​sup>​ eV<​sup>​-1</​sup>​]. 
 + 
 +For different extensions of 2D outputs, please also see [[qcl:​advanced_settings#​output_format_for_2d_plots|advanced settings in the input file]].
 ==== Gain ==== ==== Gain ====
-The folder ''​Gain/''​ contains ​files where the $x$ axis is position ​in [nm] and the $y$ axis is photon energy $E_{\rm ph}$ in units of [eV]. +The folder ''​Gain\''​ contains ​one- and two-dimensional plots of the intensity gain simulated. A negative value of gain corresponds to absorption. 
-Note that these 2D plots show 2 QCL periods although only 1 period is simulated. + 
-  * ''​Energy-Resolved_Gain_Simple-Approximation.fld''​ / ''​*.coord''​ / ''​*.dat''​\\ ​This file contains the energy-resolved intensity gain $G(x,E_{\rm ph})$ as a function of position and photon energy $E_{\rm ph}$The units are [cm<​sup>​-1</​sup>​ nm<​sup>​-1</​sup>​]. (Note that the units of the nextnano.MSB code are [eV<​sup>​-1</​sup>​ cm<​sup>​-1</​sup>​].+2D color maps show the gain $G(z,E_{\rm ph})[cm<​sup>​-1</​sup>​ nm<​sup>​-1</​sup>​],​ where the horizontal ​axis is **position** $z$ [nm] and the vertical ​axis is photon energy $E_\rm{ph}$ in units of either **energy** [meV] or **frequency** [THz]. Note that the units of gain in the nextnano.MSB code are [eV<​sup>​-1</​sup>​ cm<​sup>​-1</​sup>​]. 
 +Also note that these 2D plots show 2 QCL periods although only 1 period is simulated. 
 +  * ''​Energy-Resolved_Gain_Simple-Approximation.fld''​ / ''​*.coord''​ / ''​*.dat''​\\ ​ 
 +  * ''​Gain_vs_Position_and_Energy_SelfConsistent.vtr''​ 
 +  * ''​Gain_vs_Position_and_Frequency_SelfConsistent.vtr''​
  
-  ​* ''​Gain_Simple-Approximation.dat''​\\ This file contains the gain obtained without the self-consistent calculation.\\ The $x$ axis is energy in units of [meV].\\ The $y$ axis is the gain in units of [1/cm]A negative value of gain corresponds to absorption.+1D plots show the gain $G(E_\rm{ph})$ [cm<​sup>​-1</​sup>​] against photon **energy** [meV], **frequency** [THz], and **wavelength** [micron]. 
 +  ​* ''​Gain_Simple-Approximation.dat'' ​Intensity ​gain obtained without the self-consistent calculation. ​ 
 +  * ''​GainSemiClassical_vs_Energy.dat''​ 
 +  * ''​GainSemiClassical_vs_Frequency.dat''​ 
 +  * ''​GainSemiClassical_vs_Wavelength.dat''​ 
 +  * ''​Gain_SelfConsistent_vs_Energy.dat''​ 
 +  * ''​Gain_SelfConsistent_vs_Frequency.dat''​ 
 +  * ''​Gain_SelfConsistent_vs_Wavelength.dat''​
  
-  * ''​Gain_SelfConsistent.dat''​\\ This file contains the intensity gain obtained with the self-consistent calculation.\\ The $x$ axis is energy in units of [meV].\\ The $y$ axis is the gain in units of [1/cm]. 
-A negative value of gain corresponds to absorption. 
  
 Note that the gain output is only done for the voltages specified in the input file. Note that the gain output is only done for the voltages specified in the input file.
Line 205: Line 233:
  
 ===== Output files for voltage sweep ===== ===== Output files for voltage sweep =====
-For each simulation, the following files are produced+If you sweep voltage, the following files are generated
-  * ''​Energy_WannierStarkStates.dat''​\\ ​This file contains the energy ​levels of the Wannier-Stark states ("E_1 = Energy of level 1", "E_2 = Energy of level 2",​...) as a function of voltage, i.e. potential drop per period in units of [mV]. +  * ''​Energy_WannierStarkStates.dat''​\\ ​Energy ​levels of the Wannier-Stark states ("$E_1= Energy of level 1", "$E_2= Energy of level 2",​...) as a function of voltage, i.e. potential drop per period in units of [mV]
-  * ''​Gain_vs_Voltage.dat''​ and ''​Gain_vs_EField.dat''​\\ ​These files contain the intensity ​gain as a function of voltage or electric field respectively.\\ The $x$ axis is the potential drop per period ​[mV] (or electric field [kV/cm]).\\ The $y$ axis contains the maximum gain in [1/cm] and the photon energy ​for maximum gain [meV] (or photon frequency in [THz]).0 +  * ''​Energy_TightBinding.dat''​\\ Energy levels of the tight-binding states
-  * ''​Current_vs_Voltage.dat''​ and  ''​Current_vs_EField.dat''​ \\ These files contain current-voltage characteristics,​ i.e. the current density in units of [A/​cm<​sup>​2</​sup>​] as a function of voltage (i.e. potential drop per period ​in units of [mV]) or electrif ​field in [kV/cm]. The current is the average of the file ''​Current-Density.dat''​.+  * ''​Gain_vs_Voltage.dat''​ and ''​Gain_vs_EField.dat''​\\ ​Intensity ​gain [cm<​sup>​-1</sup>] and the photon energy ​at maximum gain [meV] (or photon frequency in [THz]) ​as a function of **voltage** (potential drop per period [mV]) or **electric field** [kV/cm]
 +  * ''​Current_vs_Voltage.dat''​ and  ''​Current_vs_EField.dat''​ \\ Current-voltage characteristics,​ i.e. the current density in units of [A/​cm<​sup>​2</​sup>​] as a function of **voltage** (potential drop per period [mV]) or **electric ​field** [kV/cm]. The current is the average of the file ''​Current-Density.dat''​.
  
 ===== Combined temperature-voltage sweep ===== ===== Combined temperature-voltage sweep =====
qcl/simulation_output.1629294783.txt.gz · Last modified: 2021/08/18 13:53 by takuma.sato