User Tools

Site Tools


qcl:simulation_output

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
qcl:simulation_output [2021/08/18 15:22]
takuma.sato [Output files for voltage sweep]
qcl:simulation_output [2022/09/20 17:10] (current)
thomas.grange
Line 70: Line 70:
  
 The folder ''​Init_Electr_Modes\ReducedRealSpace\''​ contains:\\ The folder ''​Init_Electr_Modes\ReducedRealSpace\''​ contains:\\
-  * ''​ReducedRealSpaceModes.dat''​\\ Conduction band edge and square of the wave functions (shifted in energy) vs. the heterostructure coordinate position.\\ 3 periods are displayed. ​(p0) means period ​(left period), (p1) means period 1 (central period), and p2 period 2 (right period). The numbers of states displayed is equal to 3 times the number of states per period, that is the number of selected minibands.+  * ''​ReducedRealSpaceModes.dat''​\\ Conduction band edge and square of the wave functions (shifted in energy) vs. the heterostructure coordinate position.\\ 3 periods are displayed. ​'per.0' '​per.1'​ '​per.2'​ in the wavefunction names refer to the left, middle ​and right period ​shown. The numbers of states displayed is equal to 3 times the number of states per period, that is the number of selected minibands.
 {{ :​qcl:​ReducedRealSpace.png?​direct&​500 |}} {{ :​qcl:​ReducedRealSpace.png?​direct&​500 |}}
   * ''​ReducedRealSpaceModesOn.dat''​ \\ Same as in ''​ReducedRealSpaceModes.dat''​ but the vanishing parts of the wavefunctions are not shown (plot not supported by nextnanomat).   * ''​ReducedRealSpaceModesOn.dat''​ \\ Same as in ''​ReducedRealSpaceModes.dat''​ but the vanishing parts of the wavefunctions are not shown (plot not supported by nextnanomat).
Line 90: Line 90:
 The Wannier-Stark states correspond to the eigenstates of the Schrödinger equation without accounting for Poisson equation (i.e. electrostatic mean-field).\\ The Wannier-Stark states correspond to the eigenstates of the Schrödinger equation without accounting for Poisson equation (i.e. electrostatic mean-field).\\
 It contains: It contains:
-  * ''​Wannier-Stark_States.dat''​ shows the conduction band edge and the probability densities of the eigenstates of the Wannier-Stark states. Schrödinger equation+  * ''​Wannier-Stark_States.dat''​ shows the conduction band edge and the probability densities of the eigenstates of the Schrödinger equation (the Wannier-Stark states)
 {{ :​qcl:​wannier-stark.png?​direct&​500 |}} {{ :​qcl:​wannier-stark.png?​direct&​500 |}}
   * ''​Wannier-Stark_levelsOn.dat''​. Same as ''​Wannier-Stark_States.dat''​ except that the points with almost zero probability density are omitted.   * ''​Wannier-Stark_levelsOn.dat''​. Same as ''​Wannier-Stark_States.dat''​ except that the points with almost zero probability density are omitted.
Line 101: Line 101:
   * ''​Oscillator_Strength.mat''​ gives the oscillator strengths.   * ''​Oscillator_Strength.mat''​ gives the oscillator strengths.
  
 +=== Oscillator strength ===
 +The oscillator strength is calculated from the formula
 +$$ 
 +f_{\alpha \beta} = \frac{2 \vert p_{\alpha \beta}\vert^2}{m_0 (E_{\beta} - E_{\alpha})}
 +$$
 +Note that the electron mass $m_0$ entering the above formula is the bare electron mass.
 +
 +This oscillator strength (which is sometimes referred as the unnormalized one), differs from the usual definition in the single band case by the ratio $m^*/m_0$, i.e. $\frac{m^*}{m_0} f_{\alpha \beta}$ is called the normalized oscillator strength.
 +
 +The advantage of this unnormalized definition is that it is general enough to be applied to the multiband case.
 +
 +Note that in the parabolic single-band case, the usual sum-rule is retrieved by using the normalized definition ​
 +$$ 
 +\sum_{\beta \neq \alpha} \frac{m^*}{m_0} f_{\alpha \beta} = 1
 +$$
  
 === In-plane discretization === === In-plane discretization ===
Line 148: Line 163:
   * ''​EffectiveMasses.dat''​ gives the position and energy-dependent effective mass   * ''​EffectiveMasses.dat''​ gives the position and energy-dependent effective mass
   * ''​Populations.text''​ indicates the population (i.e. the probability of occupation) in each level $\Psi_i$ (normalized to 1 for one period of the structure).   * ''​Populations.text''​ indicates the population (i.e. the probability of occupation) in each level $\Psi_i$ (normalized to 1 for one period of the structure).
-  * ''​SpectralFunctions.dat''​ shows the diagonal part of the spectral function, i.e. the energy-resolved density of states (DOS).+  * ''​SpectralFunctions.dat''​ shows the diagonal part of the spectral function, i.e. the energy-resolved density of states (DOS) 
 +  * ''​SpontaneousemissionRate.txt''​ gives for each pair of initial and final state the scattering rate (s^-1) of spontaneous photon emission. 
 +  * ''​SpontaneousemissionRate.mat''​ gives the same information but in matrix form: the element ($i$,$j$) gives the scattering rate (s^-1) of spontaneous photon emission between the initial state $i$ and final state $j$
   * ''​Subband_KineticEnergy.txt''​ contains the averaged kinetic energy for each level/​subband $i$. Its calculation is given by:   * ''​Subband_KineticEnergy.txt''​ contains the averaged kinetic energy for each level/​subband $i$. Its calculation is given by:
 $$ \langle E_i \rangle = \frac{ \sum_{k} ~ p_{i,k} ~ E_{\parallel}(k)}{\sum_{k} ~ p_{i,k}}, $$ where $E_{\parallel}(k)$ is the in-plane kinetic energy. $$ \langle E_i \rangle = \frac{ \sum_{k} ~ p_{i,k} ~ E_{\parallel}(k)}{\sum_{k} ~ p_{i,k}}, $$ where $E_{\parallel}(k)$ is the in-plane kinetic energy.
Line 157: Line 174:
 ==== 2D plots ==== ==== 2D plots ====
 The folder ''​2D_plots\''​ contains 2D color maps as a function of **position [nm]** (horizontal axis) and **energy [eV]** (vertical axis). Note that these 2D plots show 2 QCL periods although only 1 period is simulated. The folder ''​2D_plots\''​ contains 2D color maps as a function of **position [nm]** (horizontal axis) and **energy [eV]** (vertical axis). Note that these 2D plots show 2 QCL periods although only 1 period is simulated.
-  * ''​DOS_energy_resolved.vtr''​ / ''​*.gnu''​ / ''​*.fld''​\\ Energy-resolved local density of states (LDOS) in units of [eV<​sup>​-1</​sup>​ nm<​sup>​-1</​sup>​]. The LDOS is related to the spectral function. It shows the available states for the electrons at $k_\parallel = 0$. +  * ''​DOS_energy_resolved.vtr''​ / ''​*.plt''​ / ''​*.fld''​\\ Energy-resolved local density of states (LDOS) in units of [eV<​sup>​-1</​sup>​ nm<​sup>​-1</​sup>​]. The LDOS is related to the spectral function. It shows the available states for the electrons at $k_\parallel = 0$. 
-  * ''​CarrierDensity_energy_resolved.vtr''​ / ''​*.gnu''​ / ''​*.fld''​\\ Energy-resolved electron density $n(z,E)$ [cm<​sup>​-3</​sup>​ eV<​sup>​-1</​sup>​]. It is related to the lesser Green'​s function $\mathbf{G}^<​$. +  * ''​CarrierDensity_energy_resolved.vtr''​ / ''​*.plt''​ / ''​*.fld''​\\ Energy-resolved electron density $n(z,E)$ [cm<​sup>​-3</​sup>​ eV<​sup>​-1</​sup>​]. It is related to the lesser Green'​s function $\mathbf{G}^<​$. 
-  * ''​CurrentDensity_energy_resolved.vtr''​ / ''​*.gnu''​ / ''​*.fld''​\\ Energy-resolved current density $j(z,E)$ [A cm<​sup>​-2</​sup>​ eV<​sup>​-1</​sup>​].+  * ''​CurrentDensity_energy_resolved.vtr''​ / ''​*.plt''​ / ''​*.fld''​\\ Energy-resolved current density $j(z,E)$ [A cm<​sup>​-2</​sup>​ eV<​sup>​-1</​sup>​]. 
 + 
 +For different extensions of 2D outputs, please also see [[qcl:​advanced_settings#​output_format_for_2d_plots|advanced settings in the input file]].
 ==== Gain ==== ==== Gain ====
-The folder ''​Gain/''​ contains one- and two-dimensional plots of the intensity gain simulated. A negative value of gain corresponds to absorption.+The folder ''​Gain\''​ contains one- and two-dimensional plots of the intensity gain simulated. A negative value of gain corresponds to absorption.
  
 2D color maps show the gain $G(z,E_{\rm ph})$ [cm<​sup>​-1</​sup>​ nm<​sup>​-1</​sup>​],​ where the horizontal axis is **position** $z$ [nm] and the vertical axis is photon energy $E_\rm{ph}$ in units of either **energy** [meV] or **frequency** [THz]. Note that the units of gain in the nextnano.MSB code are [eV<​sup>​-1</​sup>​ cm<​sup>​-1</​sup>​]. 2D color maps show the gain $G(z,E_{\rm ph})$ [cm<​sup>​-1</​sup>​ nm<​sup>​-1</​sup>​],​ where the horizontal axis is **position** $z$ [nm] and the vertical axis is photon energy $E_\rm{ph}$ in units of either **energy** [meV] or **frequency** [THz]. Note that the units of gain in the nextnano.MSB code are [eV<​sup>​-1</​sup>​ cm<​sup>​-1</​sup>​].
Line 170: Line 189:
  
 1D plots show the gain $G(E_\rm{ph})$ [cm<​sup>​-1</​sup>​] against photon **energy** [meV], **frequency** [THz], and **wavelength** [micron]. 1D plots show the gain $G(E_\rm{ph})$ [cm<​sup>​-1</​sup>​] against photon **energy** [meV], **frequency** [THz], and **wavelength** [micron].
-  * ''​Gain_Simple-Approximation.dat''​\\ Intensity gain obtained without the self-consistent calculation. ​A negative value of gain corresponds to absorption. +  * ''​Gain_Simple-Approximation.dat''​ Intensity gain obtained without the self-consistent calculation. ​
   * ''​GainSemiClassical_vs_Energy.dat''​   * ''​GainSemiClassical_vs_Energy.dat''​
   * ''​GainSemiClassical_vs_Frequency.dat''​   * ''​GainSemiClassical_vs_Frequency.dat''​
qcl/simulation_output.1629300165.txt.gz · Last modified: 2021/08/18 15:22 by takuma.sato