User Tools

Site Tools


qcl:simulation_output

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
qcl:simulation_output [2022/09/20 16:47]
thomas.grange [Initial electronic states]
qcl:simulation_output [2022/09/20 17:10] (current)
thomas.grange
Line 101: Line 101:
   * ''​Oscillator_Strength.mat''​ gives the oscillator strengths.   * ''​Oscillator_Strength.mat''​ gives the oscillator strengths.
  
-== Oscillator strength == +=== Oscillator strength ​=== 
-The oscillator strength is calculated ​in the multiband case using +The oscillator strength is calculated ​from the formula
 $$  $$ 
-f_{\alpha \beta} = \frac{2 \vert P_{\alpha \beta}\vert^2}{(E_{\beta} - E_{\alpha}})+f_{\alpha \beta} = \frac{2 \vert p_{\alpha \beta}\vert^2}{m_0 (E_{\beta} - E_{\alpha})} 
 +$$ 
 +Note that the electron mass $m_0$ entering the above formula is the bare electron mass. 
 + 
 +This oscillator strength (which is sometimes referred as the unnormalized one), differs from the usual definition in the single band case by the ratio $m^*/m_0$, i.e. $\frac{m^*}{m_0} f_{\alpha \beta}$ is called the normalized oscillator strength. 
 + 
 +The advantage of this unnormalized definition is that it is general enough to be applied to the multiband case. 
 + 
 +Note that in the parabolic single-band case, the usual sum-rule is retrieved by using the normalized definition  
 +$$  
 +\sum_{\beta \neq \alpha} \frac{m^*}{m_0} f_{\alpha \beta} = 1
 $$ $$
  
qcl/simulation_output.1663692443.txt.gz · Last modified: 2022/09/20 16:47 by thomas.grange