User Tools

Site Tools


qcl:electronic_band_structure

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
qcl:electronic_band_structure [2020/02/27 18:47]
thomas.grange
qcl:electronic_band_structure [2020/04/15 15:40]
thomas.grange [2-band model]
Line 1: Line 1:
-====== Electronic Band Structure ​(in construction) ​======+====== Electronic Band Structure ====== ​ 
 +(page in construction)
  
 The band structure is modelled in the enveloppe function approximation,​ using either the single-band effective mass approximation or a multiband model. The band structure is modelled in the enveloppe function approximation,​ using either the single-band effective mass approximation or a multiband model.
Line 21: Line 22:
 where $m_{\perp}^*(z)$ is a position-dependent effective mass along the growth direction. where $m_{\perp}^*(z)$ is a position-dependent effective mass along the growth direction.
  
 +=== Effective mass ===
 If the following option is used, the effective mass is calculated from the k.p parameters If the following option is used, the effective mass is calculated from the k.p parameters
 <​code>​ <​code>​
Line 33: Line 35:
  
 $$ \frac{m_0}{m^*} = S + \frac{E_P(E_g+2\Delta_{\text{SO}}/​3)}{E_g(E_g+\Delta_{\text{SO}})} $$ $$ \frac{m_0}{m^*} = S + \frac{E_P(E_g+2\Delta_{\text{SO}}/​3)}{E_g(E_g+\Delta_{\text{SO}})} $$
 +
 +where $E_P$ is the Kane energy, $E_g$ the band gap and $\Delta_{\text{SO}}$ is the spin-orbit splitting [Vurgaftman2001]. The effective mass of the database is ignored in this case.
 +
 +If the non-parabolicty flag is specified
 +<​code>​
 +<​NonParabolicity>​yes</​NonParabolicity>​
 +</​code>​
 +the effective mass is evaluated at the energy of the first miniband:
 +$$ 
 +\frac{m_0}{m^*} = S + \frac{E_P((E_g+E_0)+2\Delta_{\text{SO}}/​3)}{(E_g+E_ 0)((E_g+E_0)+\Delta_{\text{SO}})} $$
 +where $E_0$ is the energy of the first miniband with respect to the conduction band edge.
 +
 +On the other hand, if
 +<​code>​
 +      <​Effective_mass_from_kp_parameters>​no</​Effective_mass_from_kp_parameters>​
 +</​code>​
 +is specified, the effective mass is taken directly from the nextnano.QCL database.
 +Note that the database can be overwritten in the input file.
  
 ==== 2-band model ==== ==== 2-band model ====
Line 46: Line 66:
 </​code>​ </​code>​
  
 +In this case, a conduction band is coupled to an effective valence band.
 +The 2-band Hamiltonian describing the 1-D Schrödinger equation along the z-axis reads
 +$$ H(z) = 
 +\left( {\begin{array}{cc}
 +   ​E_c(z) + \frac{\hbar^2 k_z^2}{2S(z) m_0} &  i P(z) k_z \\
 +   - i P(z) k_z & E_v(z)\\
 +  \end{array} } \right)
 +$$ 
  
 +where $P$ is the interband momentum matrix element, which is related to the Kane energy $E_p$ through:
 +$$
 +P(z) = \sqrt{\frac{m_0 E_p(z)}{2}}
 +$$
 +
 +If
 +<​code>​
 +<​Effective_mass_from_kp_parameters>​yes</​Effective_mass_from_kp_parameters>​
 +</​code>​
 +is specified, the band structure is calculated from the parameters $E_p$, $S$, $E_g$, and band offsets. The effective mass of the database is not used.
 +
 +=== Input from effective mass and non-parabolicity ===
 +If
 +<​code>​
 +<​Effective_mass_from_kp_parameters>​no</​Effective_mass_from_kp_parameters>​
 +</​code>​
 +is specified, the effective mass $m^*_0$ of the database (or overwritten in the input file) is used. $S=0$ is considered, and the interband energy is overwritten using:
 +$$
 +E_p = \frac{m_0}{m^*_0} E_g
 +$$
 +
 +In this case, non-parabolicity is controlled by the value of the bandgap.
 +
 +To further modify non-parabolicity,​ a non-parabolic coefficient $a_{np}$ can be further specified in the database or in the input file:
 +<​code>​
 +<​NonParabolicityRelative>​0.02</​NonParabolicityRelative>​
 +</​code>​
 +The parameters $E_g$ and $E_p$ are then modified according to:
 +$$
 +E'_g = E_g (1- a_{np})
 +$$
 +and
 +$$
 +E'_p = E_p (1- a_{np})
 +$$
 +
 +In this case, the dispersion relation is given by:
 +$$
 +E(k) = \frac{\hbar^2 k^2}{2m^*_0} \frac{1}{1 + \frac{(1-a_{np}) E}{E_g}} \simeq \frac{\hbar^2 k^2}{2m^*_0} \left[ 1 - \frac{(1-a_{np}) E}{E_g} \right]
 +$$
  
 ==== 3-band model ==== ==== 3-band model ====
Line 60: Line 128:
 </​code>​ </​code>​
  
 +$$ H =  
 +\left( {\begin{array}{ccc} 
 +   ​E_c(z) + \frac{\hbar^2 k_z^2}{2S(z) m_0} &  i \sqrt{\frac{2}{3}} P(z) k_z  & -i \sqrt{\frac{1}{3}} P(z) k_z\\ 
 +   - i \sqrt{\frac{2}{3}} P(z) k_z &  E_{lh}(z) & 0\\ 
 +i \sqrt{\frac{1}{3}} P(z) k_z & 0 & E_{so}(z) 
 +  \end{array} } \right) 
 +$$ 
qcl/electronic_band_structure.txt · Last modified: 2022/07/23 17:22 by thomas.grange