User Tools

Site Tools


qcl:electronic_band_structure

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
qcl:electronic_band_structure [2020/04/13 16:16]
thomas.grange [Single-band model]
qcl:electronic_band_structure [2020/04/15 15:40]
thomas.grange [2-band model]
Line 36: Line 36:
 $$ \frac{m_0}{m^*} = S + \frac{E_P(E_g+2\Delta_{\text{SO}}/​3)}{E_g(E_g+\Delta_{\text{SO}})} $$ $$ \frac{m_0}{m^*} = S + \frac{E_P(E_g+2\Delta_{\text{SO}}/​3)}{E_g(E_g+\Delta_{\text{SO}})} $$
  
-where $E_P$ is the Kane energy, $E_g$ the band gap and $\Delta_{\text{SO}}$ is the spin-orbit splitting [Vurgaftman2001].+where $E_P$ is the Kane energy, $E_g$ the band gap and $\Delta_{\text{SO}}$ is the spin-orbit splitting [Vurgaftman2001]. The effective mass of the database is ignored in this case.
  
-If+If the non-parabolicty flag is specified 
 +<​code>​ 
 +<​NonParabolicity>​yes</​NonParabolicity>​ 
 +</​code>​ 
 +the effective mass is evaluated at the energy of the first miniband: 
 +$$  
 +\frac{m_0}{m^*} = S + \frac{E_P((E_g+E_0)+2\Delta_{\text{SO}}/​3)}{(E_g+E_ 0)((E_g+E_0)+\Delta_{\text{SO}})} $$ 
 +where $E_0$ is the energy of the first miniband with respect to the conduction band edge. 
 + 
 +On the other hand, if
 <​code>​ <​code>​
       <​Effective_mass_from_kp_parameters>​no</​Effective_mass_from_kp_parameters>​       <​Effective_mass_from_kp_parameters>​no</​Effective_mass_from_kp_parameters>​
Line 57: Line 66:
 </​code>​ </​code>​
  
 +In this case, a conduction band is coupled to an effective valence band.
 +The 2-band Hamiltonian describing the 1-D Schrödinger equation along the z-axis reads
 +$$ H(z) = 
 +\left( {\begin{array}{cc}
 +   ​E_c(z) + \frac{\hbar^2 k_z^2}{2S(z) m_0} &  i P(z) k_z \\
 +   - i P(z) k_z & E_v(z)\\
 +  \end{array} } \right)
 +$$ 
  
 +where $P$ is the interband momentum matrix element, which is related to the Kane energy $E_p$ through:
 +$$
 +P(z) = \sqrt{\frac{m_0 E_p(z)}{2}}
 +$$
 +
 +If
 +<​code>​
 +<​Effective_mass_from_kp_parameters>​yes</​Effective_mass_from_kp_parameters>​
 +</​code>​
 +is specified, the band structure is calculated from the parameters $E_p$, $S$, $E_g$, and band offsets. The effective mass of the database is not used.
 +
 +=== Input from effective mass and non-parabolicity ===
 +If
 +<​code>​
 +<​Effective_mass_from_kp_parameters>​no</​Effective_mass_from_kp_parameters>​
 +</​code>​
 +is specified, the effective mass $m^*_0$ of the database (or overwritten in the input file) is used. $S=0$ is considered, and the interband energy is overwritten using:
 +$$
 +E_p = \frac{m_0}{m^*_0} E_g
 +$$
 +
 +In this case, non-parabolicity is controlled by the value of the bandgap.
 +
 +To further modify non-parabolicity,​ a non-parabolic coefficient $a_{np}$ can be further specified in the database or in the input file:
 +<​code>​
 +<​NonParabolicityRelative>​0.02</​NonParabolicityRelative>​
 +</​code>​
 +The parameters $E_g$ and $E_p$ are then modified according to:
 +$$
 +E'_g = E_g (1- a_{np})
 +$$
 +and
 +$$
 +E'_p = E_p (1- a_{np})
 +$$
 +
 +In this case, the dispersion relation is given by:
 +$$
 +E(k) = \frac{\hbar^2 k^2}{2m^*_0} \frac{1}{1 + \frac{(1-a_{np}) E}{E_g}} \simeq \frac{\hbar^2 k^2}{2m^*_0} \left[ 1 - \frac{(1-a_{np}) E}{E_g} \right]
 +$$
  
 ==== 3-band model ==== ==== 3-band model ====
Line 71: Line 128:
 </​code>​ </​code>​
  
 +$$ H =  
 +\left( {\begin{array}{ccc} 
 +   ​E_c(z) + \frac{\hbar^2 k_z^2}{2S(z) m_0} &  i \sqrt{\frac{2}{3}} P(z) k_z  & -i \sqrt{\frac{1}{3}} P(z) k_z\\ 
 +   - i \sqrt{\frac{2}{3}} P(z) k_z &  E_{lh}(z) & 0\\ 
 +i \sqrt{\frac{1}{3}} P(z) k_z & 0 & E_{so}(z) 
 +  \end{array} } \right) 
 +$$ 
qcl/electronic_band_structure.txt · Last modified: 2022/07/23 17:22 by thomas.grange