User Tools

Site Tools


qcl:list_of_updates

This is an old revision of the document!


Update 2020/11/20

Photon-assisted transport and gain clamping are now supported to simulate lasing above threshold and quantum cascade detectors. This new feature is illustrated in the sample files “MidIR_QCL_InGaAs_InAlAs_Bai_APL2011_GainClamping_12subbbands.xml“ (faster) and “MidIR_QCL_InGaAs_InAlAs_Bai_APL2011_GainClamping_21subbbands.xml” (more accurate) where LIV curves are calculated. The corresponding documentation can be found here: Photon-assisted transport and gain clamping

- Open boundary conditions for simulating e.g. Resonant Tunnelling Diodes (RTDs) are supported. See the 2 sample files in the “RTDs” subfolder of the sample files. Simulation of devices with open boundary conditions

(this page was not maintained before)

Older updates

New feature: a combined temperature-voltage sweep can be done using the keyword Temperature-Voltage in the field <SweepType> of <SweepParameters> (see the example of code below). In this case, the simulation can be parallelized. <Threads> defines the number of parallel threads. Its optimal value should be the number of CPU cores available (if the available memory is sufficient). Within each parallel temperature sweep, a serial voltage sweep is performed.

<SweepParameters>   
    <SweepType>Temperature-Voltage</SweepType>
    <MinV> 50</MinV> 
    <MaxV> 60</MaxV> 	
    <DeltaV> 2</DeltaV> 	

    <MinT> 25</MinT> 
    <MaxT> 300</MaxT> 	
    <DeltaT> 25</DeltaT> 

    <Threads>12</Threads> <!-- Parallelization for Temperature-Voltage sweep -->
</SweepParameters>

Note that for such voltage-temperature sweep, <Maximum_Number_of_Threads> in <Simulation_Parameter> should be set to 1. (A combined parallelization will result in lower performances.)

<Simulation_Parameter>
  ...
  <Maximum_Number_of_Threads>1</Maximum_Number_of_Threads>
</Simulation_Parameter>

At the end of the simulation, current and gain maps can be displayed. Gain_map.fld gives the maximum gain at each (voltage,temperature) point. Max_Gain_frequency.fld gives the map of the corresponding photon energy for which the gain is maximum.

Folder view:

Gain map (V,T):

qcl/list_of_updates.1605883091.txt.gz · Last modified: 2020/11/20 14:38 by thomas.grange